SwePub
Tyck till om SwePub Sök här!
Sök i SwePub databas

  Utökad sökning

Träfflista för sökning "swepub ;pers:(Ottersten Björn 1961);lar1:(kth);pers:(Sharma S. K.)"

Sökning: swepub > Ottersten Björn 1961 > Kungliga Tekniska Högskolan > Sharma S. K.

  • Resultat 1-10 av 35
Sortera/gruppera träfflistan
   
NumreringReferensOmslagsbildHitta
1.
  • Chatzinotas, S., et al. (författare)
  • Frequency Packing for Interference Alignment-based Cognitive Dual Satellite Systems
  • 2013
  • Ingår i: 2013 IEEE 78TH VEHICULAR TECHNOLOGY CONFERENCE. - 9781467361873
  • Konferensbidrag (refereegranskat)abstract
    • Interference Alignment (IA) has been considered a promising technique for spectral coexistence of different wireless systems in an underlay cognitive mode. Furthermore, Frequency Packing (FP) can be considered as an important technique for enhancing the spectrum efficiency in spectrum-limited satellite applications. In this paper, we consider a spectral coexistence scenario of a multibeam satellite and a monobeam satellite with the monobeam satellite as primary and the multibeam satellite as secondary. In this context, this paper focuses on examining the effect of FP on the performance of multi-carrier based IA technique. For this purpose, different IA techniques such as coordinated IA, uncoordinated IA and static IA have been considered. The effect of FP on the performance of different IA techniques in the considered scenario is evaluated in terms of system sum rate and primary rate protection ratio. It is shown that the system sum rate increases with the FP factor for all the techniques and the primary rate is perfectly protected with the coordinated IA technique even with dense FP.
  •  
2.
  • Chatzinotas, S., et al. (författare)
  • Multiantenna signal processing for cognitive communications
  • 2013
  • Ingår i: 2013 IEEE China Summit & International Conference on Signal and Information Processing (ChinaSIP). - 9781479910434 ; , s. 293-297
  • Konferensbidrag (refereegranskat)abstract
    • Cognitive communications has attracted a large interest during the last decade due to spectrum scarcity. In combination with multiantenna techniques, cognitive communications have the ability to increase spectral efficiency by enabling the coexistence of a primary and secondary systems. In this paper, we focus in two specific cognitive approaches: a) Multiantenna Interference Alignment (IA) and b) Multiantenna Spectrum Sensing (SS). In the first case, we investigate how IA over multiple spatial dimensions can be exploited in order to lower harmful interference towards the primary system into acceptable levels. In the second case, we compare the sensing performance of different eigenvalue-based blind SS techniques. This paper concludes by presenting some interesting open problems in this area.
  •  
3.
  • Gautam, S., et al. (författare)
  • Multigroup Multicast Precoding for Energy Optimization in SWIPT Systems With Heterogeneous Users
  • 2020
  • Ingår i: IEEE Open Journal of the Communications Society. - : Institute of Electrical and Electronics Engineers (IEEE). - 2644-125X. ; 1, s. 92-108
  • Tidskriftsartikel (refereegranskat)abstract
    • The key to developing future generations of wireless communication systems lies in the expansion of extant methodologies, which ensures the coexistence of a variety of devices within a system. In this paper, we assume several multicasting (MC) groups comprising three types of heterogeneous users including Information Decoding (ID), Energy Harvesting (EH) and both ID and EH. We present a novel framework to investigate the multi-group (MG) - MC precoder designs for three different scenarios, namely, Separate Multicast and Energy Precoding Design (SMEP), Joint Multicast and Energy Precoding Design (JMEP), and Per-User Information and/or Energy Precoding Design (PIEP). In the considered system, a multi-antenna source transmits the relevant information and/or energy to the groups of corresponding receivers using more than one MC streams. The data processing users employ the conventional ID receiver architectures, the EH users make use of a non-linear EH module for energy acquisition, while the users capable of performing both ID and EH utilize the separated architecture with disparate ID and non-linear EH units. Our contribution is threefold. Firstly, we propose an optimization framework to i) minimize the total transmit power and ii) to maximize the sum harvested energy, the two key performance metrics of MG-MC systems. The proposed framework allows the analysis of the system under arbitrary given quality of service and harvested energy requirements. Secondly, to deal with the non-convexity of the formulated problems, we transform the original problems respectively into equivalent forms, which can be effectively solved by semi-definite relaxation (SDR) and alternating optimization. The convergence of the proposed algorithms is analytically guaranteed. Thirdly, a comparative study between the proposed schemes is conducted via extensive numerical results, wherein the benefits of adopting SMEP over JMEP and PIEP models are discussed.
  •  
4.
  •  
5.
  • Gautam, S., et al. (författare)
  • Weighted Sum-SINR and Fairness Optimization for SWIPT-Multigroup Multicasting Systems with Heterogeneous Users
  • 2020
  • Ingår i: IEEE Open Journal of the Communications Society. - : Institute of Electrical and Electronics Engineers (IEEE). - 2644-125X. ; 1, s. 1470-1484
  • Tidskriftsartikel (refereegranskat)abstract
    • The development of next generation wireless communication systems focuses on the expansion of existing technologies, while ensuring an accord between various devices within a system. In this article, we target the aspect of precoder design for simultaneous wireless information and power transmission (SWIPT) in a multi-group (MG) multicasting (MC) framework capable of handling heterogeneous types of users, viz., information decoding (ID) specific, energy harvesting (EH) explicit, and/or both ID and EH operations concurrently. Precoding is a technique well-known for handling the inter-user interference in multi-user systems, however, the joint design with SWIPT is not yet fully exploited. Herein, we investigate the potential benefits of having a dedicated precoder for the set of users with EH demands, in addition to the MC precoding. We study the system performance of the aforementioned system from the perspectives of weighted sum of signal-to-interference-plus-noise-ratio (SINR) and fairness. In this regard, we formulate the precoder design problems for (i) maximizing the weighted sum of SINRs at the intended users and (ii) maximizing the minimum of SINRs at the intended users; both subject to the constraints on minimum (non-linear) harvested energy, an upper limit on the total transmit power and a minimum SINR required to close the link. We solve the above-mentioned problems using distinct iterative algorithms with the help of semi-definite relaxation (SDR) and slack-variable replacement (SVR) techniques, following suitable transformations pertaining the problem convexification. The main novelty of the proposed approach lies in the ability to jointly design the MC and EH precoders for serving the heterogeneously classified ID and EH users present in distinct groups, respectively. We illustrate the comparison between the proposed weighted sum-SINR and fairness models via simulation results, carried out under various parameter values and operating conditions.
  •  
6.
  •  
7.
  •  
8.
  • Kaushik, A., et al. (författare)
  • Sensing-Throughput Tradeoff for Interweave Cognitive Radio System : A Deployment-Centric Viewpoint
  • 2016
  • Ingår i: IEEE Transactions on Wireless Communications. - : Institute of Electrical and Electronics Engineers (IEEE). - 1536-1276 .- 1558-2248. ; 15:5, s. 3690-3702
  • Tidskriftsartikel (refereegranskat)abstract
    • Secondary access to the licensed spectrum is viable only if the interference is avoided at the primary system. In this regard, different paradigms have been conceptualized in the existing literature. Among these, interweave systems (ISs) that employ spectrum sensing have been widely investigated. Baseline models investigated in the literature characterize the performance of the IS in terms of a sensing-throughput tradeoff, however, this characterization assumes perfect knowledge of the involved channels at the secondary transmitter, which is unavailable in practice. Motivated by this fact, we establish a novel approach that incorporates channel estimation in the system model, and consequently investigate the impact of imperfect channel knowledge on the performance of the IS. More particularly, the variation induced in the detection probability affects the detector's performance at the secondary transmitter, which may result in severe interference at the primary receivers. In this view, we propose employing average and outage constraints on the detection probability, in order to capture the performance of the IS. Our analysis reveals that with an appropriate choice of the estimation time determined by the proposed approach, the performance degradation of the IS can be effectively controlled, and subsequently the achievable secondary throughput can be significantly enhanced. 
  •  
9.
  • Korrai, P., et al. (författare)
  • A RAN Resource Slicing Mechanism for Multiplexing of eMBB and URLLC Services in OFDMA Based 5G Wireless Networks
  • 2020
  • Ingår i: IEEE Access. - : Institute of Electrical and Electronics Engineers (IEEE). - 2169-3536. ; 8, s. 45674-45688
  • Tidskriftsartikel (refereegranskat)abstract
    • Enhanced mobile broadband (eMBB) and ultra-reliable and low-latency communications (URLLC) are the two main expected services in the next generation of wireless networks. Accommodation of these two services on the same wireless infrastructure leads to a challenging resource allocation problem due to their heterogeneous specifications. To address this problem, slicing has emerged as an architecture that enables a logical network with specific radio access functionality to each of the supported services on the same network infrastructure. The allocation of radio resources to each slice according to their requirements is a fundamental part of the network slicing that is usually executed at the radio access network (RAN). In this work, we formulate the RAN resource allocation problem as a sum-rate maximization problem subject to the orthogonality constraint (i.e., service isolation), latency-related constraint and minimum rate constraint while maintaining the reliability constraint with the incorporation of adaptive modulation and coding (AMC). However, the formulated problem is not mathematically tractable due to the presence of a step-wise function associated with the AMC and a binary assignment variable. Therefore, to solve the proposed optimization problem, first, we relax the mathematical intractability of AMC by using an approximation of the non-linear AMC achievable throughput, and next, the binary constraint is relaxed to a box constraint by using the penalized reformulation of the problem. The result of the above two-step procedure provides a close-to-optimal solution to the original optimization problem. Furthermore, to ease the complexity of the optimization-based scheduling algorithm, a low-complexity heuristic scheduling scheme is proposed for the efficient multiplexing of URLLC and eMBB services. Finally, the effectiveness of the proposed optimization and heuristic schemes is illustrated through extensive numerical simulations.
  •  
10.
  •  
Skapa referenser, mejla, bekava och länka
  • Resultat 1-10 av 35

Kungliga biblioteket hanterar dina personuppgifter i enlighet med EU:s dataskyddsförordning (2018), GDPR. Läs mer om hur det funkar här.
Så här hanterar KB dina uppgifter vid användning av denna tjänst.

 
pil uppåt Stäng

Kopiera och spara länken för att återkomma till aktuell vy